

Keeping ISolation Simple Keeping ISolation Simple

Don Getzlaf President Cemblend Systems Inc.

Ceramic cements are utilized to aid operators in meeting Environmental and Regulatory goals with step-change methodology, keeping up with the "moving target"

Today's Discussion

- Why ceramics
- Progression of technology
 - Reduce risk
- Case Histories
 - Remedial
 - Open Hole
- Going forward

Definition

• Structure

- Portland cement molecular bonds
 - Van der Waals forces
- Ceramic cement molecular bonds
 - Ionic or covalent bonds
 - Much stronger and permanent

Traditional Definition

- Portland cements
 - Room temperature setting
- Ceramics
 - High temperature setting

Portland Cement

Why use Ceramics

Why Ceramics

• Temp range

- -Portland cement <110 C
- -Ceramics >400 C

Porosity

- -Portland cement 5%
- -Ceramics < 0.5 %

Why Ceramics

Permeability

- -Portland 0.1 md
- -Ceramic <1/10 th

Tensile Strength

-Equivalent or higher then Portland

Why Ceramics

Environmental

- Portland high Ph
- Ceramic neutral Ph

Bonding

- Portland bond is mechanical
- Ceramic bond is direct chemical and mechanical
- Typical bond is 3-5 times Portland

Uses

Other Industry Applications

Dental Fillings

- Permanent acid resistance and bonding

Runway repair

- Ultra high early strength, bonding and thermal

Nuclear waste encapsulation

- Leaching, permanence and bonding

Construction

- Temperature and endurance
- Waste Management
 - Same as Nuclear

Oilfield use of Ceramics

- Permafrost
 - Low temperature setting properties
- Thermal
 - High temperature properties
- Lost Circulation
 - Quick setting properties

Oilfield use of Ceramics

• Environmental

- Permanent, impermeable, low porosity and neutral Ph
- Conformance

CO₂ Sequestering

- Acid resistance
- Low CO2 conversion

Remedial

– All of the above

Properties

Properties

- Most of the strength is obtained in first few hours
- Slightly expanding
- High bond strength

Thickening time example

32 Bc to 100 Bc in 2 minutes Bearden units of consistency

Bond Testing

Bond tests at surface temperature and 315 C Typically 3-5 times higher then Portland.

315 C pipe in pipe tests to test wellbore integrity

Risk Analysis

Risk Mitigation

- Start with low risk application
 - Water conformance
 - Gas Migration

• Medium risk

- Lost circulation
- Zonal abandonment
 - Straddle tools

Highest risk

– Primary cementing

Case Histories

Pin Point Zonal Isolation (a case history)

How do I ...?

- Permanently shut the water production off
- Mitigate damage to the numerous other zones in the well
- Do this in a cost effective way

Answer #1

 Conventional cement squeeze technology requires rigs, retainers and subsequent drill outs

Answer #1

- Probably 3 days
- Dimage to Upper Zones
- No guarantee of squeeze

Answer #2

 Place a barrier within the porosity that permanently shuts off the water production and requires no drilling and/or damage to producing formations

How do we do this?

- Place a retrievable bridge plug on Wire Line
- Run in the well with a retrievable CT service packer
- Pump a Microceramic Activator
- Pump a Microceramic binder

How do we do this?

- Obtain a porosity squeeze
- Place N₂ pressure on the annulus
- Unset CT service packer
- Reverse out excess Microceramic binder

How do we do this?

- Pull out CT service packer
- Pull out bridge plug
- Leaving behind impermeable permanent barrier

Lost Circulation (a case history)

Medium risk model

Lost Circulation Squeeze

- Lost Circulation at 100 m
- Had attempted Large Thixo, Silicate squeeze
- Mix activator and Binder at surface

Lost Circulation Squeeze

- Time based on fluid level
- At 0.5 m³ in zone gained pressure
- Drilled out next day and had minor leak

Going forward

Thermal Production casing

- Tail in slurry
 - Utilizes Ceramics best properties across zone
 - Compatible with Portland
 - Pump times and strength in place
 - Bond tests performed

Thermal injection casing

- Tail in slurry
- CO₂ injection wells
 - Tail in slurry

KISS Principle Slurry set is largely independent of

- temperature
- Particle size
- pressure
- organic contamination
- Can adjust properties based on what is required not on product restrictions

Keeping ISolation Simple

Thanks My Co-Authors

David Colborne Encana Marty Stromquist Cemblend

Do "YOU" have a question?

